Lower bounds to ground-state eigenvalues

M.G. Marmorino *
Department of Chemistry, CPO 2027, Berea College, Berea, KY 40404, USA

Abstract

A new lower bound method is presented for ground-state eigenvalues which relies on the Eckart inequality. The method bears similarity to the variational method and the Temple lower bound formula. Restrictions are that an exactly soluble base Hamiltonian must be available with a positive-semidefinite perturbation to the Hamiltonian of interest. A sample calculation shows that our method is able to sometimes best the Temple bound and also perform rigorously when the Temple bound does not.

KEY WORDS: lower bounds, Temple, variational method

1. Introduction

Eigenvalue problems abound in mathematics, physics and chemistry, and a standard method to approximate the eigenvalues is the variational method. Although the variational method produces rigorous upper bounds, it does not give corresponding lower bounds - without which the quality of variational approximations cannot be rigorously judged. Thus the calculation of lower bounds is very important. Unfortunately, lower bound calculations have not enjoyed the success of upper bound calculations. Lower bound calculations typically suffer from theoretical as well as computational difficulties. Numerous methods exist to calculate lower bounds to eigenvalues, such as: intermediate problems [1-7], variance-like formulas [8-14], effective fields [15-19], local energy [20,21], inequalities between systems of the same or different numbers of particles [22-24] and Temple-Lehmann methods [25]. No current method of lower bound calculation has proved adequate for general use in quantum chemistry and thus variational upper bound calculations or approximate calculations are the methods of choice.

We present a simple and general strategy to calculate a lower bound to any eigenvalue of any Hamiltonian and then construct a very restricted but explicit method. The restrictions are that a lower bound to only the ground-state eigenvalue of a Hamiltonian is provided and the Hamiltonian must be greater than another exactly soluble Hamiltonian (which we call the base Hamiltonian).

* Current address: Department of Chemistry, Indiana University, South Bend, ID 46634, USA

2. Strategy

We begin by taking the Gram determinant of the functions $\phi, H \phi$ and ψ_{n} where ϕ is an arbitrary function in the domain of the Hamiltonian H and ψ_{n} is the nth eigenfunction of the Hamiltonian H with corresponding eigenvalue E_{n}. Assume that both ϕ and ψ_{n} are normalized and real. Letting S denote $\left\langle\phi \mid \psi_{n}\right\rangle=\left\langle\psi_{n} \mid \phi\right\rangle$, the result is:

$$
\begin{equation*}
\langle\phi| H^{2}|\phi\rangle\left(1-S_{n}^{2}\right)-\langle\phi| H|\phi\rangle^{2}+2 E_{n} S_{n}^{2}\langle\phi| H|\phi\rangle-E_{n}^{2} S_{n}^{2} \geqslant 0 . \tag{1}
\end{equation*}
$$

Using the quadratic formula to solve for E_{n} and rearranging gives:

$$
\begin{equation*}
\left[\langle\phi| H|\phi\rangle-E_{n}\right]^{2} \leqslant\left(S_{n}^{-2}-1\right)\left(\langle\phi| H^{2}|\phi\rangle-\langle\phi| H|\phi\rangle^{2}\right) . \tag{2}
\end{equation*}
$$

This result was derived by Weinhold [26]. If S_{n}^{2} can be bounded from below then an upper bound and lower bound are available for E_{n} through (2). Since upper bounds are relatively simple to calculate by the variational theorem we concentrate on the lower bound. Weinstein [10] and others have derived bounds similar to (2) but missing the overlap term:

$$
\begin{equation*}
\left[\langle\phi| H|\phi\rangle-E_{n}\right]^{2} \leqslant\left(\langle\phi| H^{2}|\phi\rangle-\langle\phi| H|\phi\rangle^{2}\right) . \tag{3}
\end{equation*}
$$

The interpretation of this is that some eigenvalue (or spectral point, in general) is bounded in the range indicated by (3) but there is no indication as to which quantum number n (3) refers. When we incorporate S_{n} in (2) we assume that we know (or at least can bound) the overlap of ϕ with a specific eigenfunction ψ_{n}; the result is an error bracket around a specific (the n th) eigenvalue. When $S_{n}=1 / 2$, (2) gives the same numerical bound as (3) but allows a specific eigenvalue to be bounded.

3. The Temple lower bound

We now introduce the Eckart inequality:

$$
\begin{equation*}
S_{1}^{2} \geqslant \frac{E_{2}-\langle\phi| H|\phi\rangle}{E_{2}-E_{1}} \tag{4}
\end{equation*}
$$

which gives a non-trivial lower bound to S_{1}^{2} only if $\langle\phi| H|\phi\rangle<E_{2}$, otherwise the bound is zero or negative. Only in the non-trivial case can the Eckart inequality be properly substituted in (2) to give the Temple lower bound:

$$
\begin{equation*}
E_{1} \geqslant \frac{E_{2}\langle\phi| H|\phi\rangle-\langle\phi| H^{2}|\phi\rangle}{E_{2}-\langle\phi| H|\phi\rangle}, \tag{5}
\end{equation*}
$$

where the limitation $\langle\phi| H|\phi\rangle<E_{2}$ carries over from the Eckart inequality. Usually E_{2} is not known; instead a lower bound $E_{2}^{\text {low }}$ can be substituted for E_{2} in the Eckart inequality (4), which translates to the same substitution in the Temple lower bound (5):

$$
\begin{equation*}
E_{1} \geqslant \frac{E_{2}^{\text {low }}\langle\phi| H|\phi\rangle-\langle\phi| H^{2}|\phi\rangle}{E_{2}^{\text {low }}-\langle\phi| H|\phi\rangle} \tag{6}
\end{equation*}
$$

with the modified limitation $\langle\phi| H|\phi\rangle<E_{2}^{\text {low }}$. A rigorous bound to E_{2} is sometimes available, but when it is not available the Temple lower bound cannot be applied or must be applied with "good faith" using an estimate or experimental value for E_{2}. Estimation of E_{2} ruins the rigor of the Temple bound so that an estimate of E_{1} results instead of a lower bound to E_{1}. An experimental value of E_{2} forces the calculation to be semiempirical instead of independent of experiment.

4. A new lower bound

Suppose that the Hamiltonian H is related to an exactly soluble Hamiltonian H^{\prime} by the relation

$$
\begin{equation*}
H=H^{\prime}+P^{\prime} \tag{7}
\end{equation*}
$$

Suppose also that ϕ is the ground-state eigenfunction of H^{\prime} with eigenvalue E_{1}^{\prime}. Then the Eckart inequality supplies two different lower bounds to $S_{1}^{2}=\left\langle\phi \mid \psi_{1}\right\rangle^{2}$. The first is (4) above and the second is:

$$
\begin{equation*}
S_{1}^{2} \geqslant \frac{E_{2}^{\prime}-\left\langle\psi_{1}\right| H^{\prime}\left|\psi_{1}\right\rangle}{E_{2}^{\prime}-E_{1}^{\prime}} \tag{8}
\end{equation*}
$$

obtained by interchanging ϕ with ψ_{1} and all unprimed with primed quantities (E_{2}^{\prime} is the first excited-state eigenvalue of H^{\prime}). Insertion of (8) in (2) gives the lower bound:

$$
\begin{equation*}
E_{1} \geqslant\langle\phi| H|\phi\rangle-\left[\frac{\left\langle\psi_{1}\right| H^{\prime}\left|\psi_{1}\right\rangle-E_{1}^{\prime}}{E_{2}^{\prime}-\left\langle\psi_{1}\right| H^{\prime}\left|\psi_{1}\right\rangle}\right]^{1 / 2}\left[\langle\phi| H^{2}|\phi\rangle-\langle\phi| H|\phi\rangle^{2}\right]^{1 / 2} \tag{9}
\end{equation*}
$$

when $\left\langle\psi_{1}\right| H^{\prime}\left|\psi_{1}\right\rangle<E_{2}^{\prime}$. This is to be compared with the Temple lower bound (5) since they are derived in the same fashion. In (5) E_{2} must be bounded from below, while in (9) $\left\langle\psi_{1}\right| H^{\prime}\left|\psi_{1}\right\rangle$ must be bounded from above. Another difficulty involved in (5) and (9) is that the integral $\langle\phi| H^{2}|\phi\rangle$ is needed, in addition, to the simpler integral $\langle\phi| H|\phi\rangle$; only the latter is needed in variational (upper bound) calculations.

The bound given by (9) illustrates the idea involved, but unfortunately, the only practical upper bound to $\left\langle\psi_{1}\right| H^{\prime}\left|\psi_{1}\right\rangle$ we have found makes use of the unknown S_{1}, so that (9) still has two unknowns: E_{1} and S_{1}. Thus (9) is not practical.

Instead we first use the upper bound to $\left\langle\psi_{1}\right| H^{\prime}\left|\psi_{1}\right\rangle$ which makes use of the unknown S_{1} to get a numerical bound to S_{1}^{2} using (8) and then substitute this numerical bound in the following version of (2):

$$
\begin{equation*}
E_{1} \geqslant\langle\phi| H|\phi\rangle-\left[S_{1}^{-2}-1\right]^{1 / 2}\left[\langle\phi| H^{2}|\phi\rangle-\langle\phi| H|\phi\rangle^{2}\right]^{1 / 2} \tag{10}
\end{equation*}
$$

Furthermore, since $H^{\prime} \phi=E_{1}^{\prime} \phi$ and $H=H^{\prime}+P^{\prime}$, (10) simplifies to:

$$
\begin{equation*}
E_{1} \geqslant E_{1}^{\prime}-\left[S_{1}^{-2}-1\right]^{1 / 2}\left[\langle\phi|\left(P^{\prime}\right)^{2}|\phi\rangle-\langle\phi| P^{\prime}|\phi\rangle^{2}\right]^{1 / 2} \tag{11}
\end{equation*}
$$

The Temple bound can also be simplified in this case:

$$
\begin{equation*}
E_{1} \geqslant \frac{E_{2}^{\mathrm{low}} E_{1}^{\prime}-\left(E_{1}^{\prime}\right)^{2}-2 E_{1}^{\prime}\langle\phi| P^{\prime}|\phi\rangle-\langle\phi|\left(P^{\prime}\right)^{2}|\phi\rangle}{E_{2}^{\mathrm{low}}-E_{1}^{\prime}} \tag{12}
\end{equation*}
$$

5. Intermediate problem

We introduce three Hamiltonians:

1. Base Hamiltonian H^{0} :

$$
H^{0} \psi_{n}^{0}=E_{n}^{0} \psi_{n}^{0} .
$$

2. Intermediate Hamiltonian H^{\prime} :

$$
H^{\prime} \psi_{n}^{\prime}=E_{n}^{\prime} \psi_{n}^{\prime} .
$$

3. Full Hamiltonian H :

$$
H \psi_{n}=E_{n} \psi_{n} .
$$

The eigenfunctions ψ_{n}^{0} and eigenvalues E_{n}^{0} of the base Hamiltonian H^{0} are exactly known. The ground-state eigenvalue E_{1} of the full Hamiltonian H is what we wish to bound from below. The full Hamiltonian is greater than the base Hamiltonian by a positive-semidefinite perturbation P so that $H=H^{0}+P$. This means that the eigenvalues E_{n}^{0} of the base Hamiltonian are already lower bounds (though probably poor) to the eigenvalues E_{n} of the full Hamiltonian. Thus it may very well be possible to calculate the Temple lower bound to E_{1} (which requires a lower bound to E_{2}) so our new lower bound formula must be able to compete with the Temple lower bound.

Suppose that we perform a linear variational calculation with H in the subspace $\mathbf{S}(N)$ which is the N-dimensional subspace spanned by the N eigenfunctions $\psi_{1}^{0}, \ldots, \psi_{N}^{0}$ of H^{0} that have the lowest eigenvalues. Define f_{1}, \ldots, f_{N} as the N eigenfunctions (with eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$) of this variational problem. Let $\mathbf{R}=\mathbf{S}(N)^{\perp}$ be the orthogonal complement of $\mathbf{S}(N)$ so that the span of \mathbf{R} and $\mathbf{S}(N)$ is the complete Hilbert space. We define the intermediate Hamiltonian H^{\prime} as:

$$
\begin{equation*}
H^{\prime}=H^{0}+P_{\mathbf{S}(N)} P P_{\mathbf{S}(N)}, \tag{13}
\end{equation*}
$$

where $P_{\mathbf{S}(N)}$ are projection operators onto the subspace $\mathbf{S}(N) . \mathbf{S}(N)$ and \mathbf{R} are reducing spaces for H^{\prime} so that for any function $f \in \mathbf{S}(N), H^{\prime} f \in \mathbf{S}(N)$ and for any function $f \in \mathbf{R}, H^{\prime} f \in \mathbf{R}$. The eigenfunctions and eigenvalues for H^{\prime} are then those of $\left.H^{\prime}\right|_{\mathbf{S}_{(N)}}$ and $\left.H^{\prime}\right|_{\mathbf{R}}$. The eigenfunctions and eigenvalues of $\left.H^{\prime}\right|_{\mathbf{S}(N)}$ are those of the variational problem of H in $\mathbf{S}(N)$. These are readily calculated. The eigenfunctions and eigenvalues of $\left.H^{\prime}\right|_{\mathbf{R}}$ are those of $\left.H^{0}\right|_{\mathbf{R}}$ since $\left.P_{\mathbf{S}(N)} P P_{\mathbf{S}_{(N)}}\right|_{\mathbf{R}}=0$. These are known by assumption. Thus the eigenfunctions and eigenvalues of H^{\prime} are completely known. In a simple case the eigenvalues of H^{\prime} are

$$
E_{1}^{\prime}=\lambda_{1}, \quad E_{2}^{\prime}=\lambda_{2}, \quad \ldots, \quad E_{N}^{\prime}=\lambda_{N}, \quad E_{N+1}^{\prime}=E_{N+1}^{0}, \quad E_{N+2}^{\prime}=E_{N+2}^{0}, \quad \ldots
$$

This is not the only case; there can be much mixing of the variational and unused baseHamiltonian eigenstates. It can even be that the variational ground state is not the ground state of H^{\prime}; however, for our lower bound formula to work λ_{1} must be E_{1}^{\prime}. In general, we use only E_{2}^{\prime} of the other intermediate eigenvalues and do not care if it is a variational eigenvalue $\left(=\lambda_{2}\right)$ or unused base-Hamiltonian eigenvalue $\left(=E_{N+1}^{0}\right)$. In section 7 we specialize the lower bound formula to require the simple case shown above.

The perturbation of H^{\prime} to the full Hamiltonian is $P^{\prime}=P-P_{\mathbf{S}(N)} P P_{\mathbf{S}(N)}$ so that $H=H^{\prime}+P^{\prime}=H^{0}+P$. With this choice of the intermediate Hamiltonian inequalities (11) and (12) simplify to:

$$
\begin{equation*}
E_{1} \geqslant E_{1}^{\prime}-\left[S_{1}^{-2}-1\right]^{1 / 2}\left[\left\langle\psi_{1}^{\prime}\right| P^{2}\left|\psi_{1}^{\prime}\right\rangle-\left\langle\psi_{1}^{\prime}\right| \underline{P}^{2}\left|\psi_{1}^{\prime}\right\rangle\right]^{1 / 2} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{1} \geqslant \frac{E_{2}^{\mathrm{low}} E_{1}^{\prime}-\left(E_{1}^{\prime}\right)^{2}-\left\langle\psi_{1}^{\prime}\right| P^{2}\left|\psi_{1}^{\prime}\right\rangle+\left\langle\psi_{1}^{\prime}\right| \underline{P}^{2}\left|\psi_{1}^{\prime}\right\rangle}{E_{2}^{\mathrm{low}}-E_{1}^{\prime}} \tag{15}
\end{equation*}
$$

respectively, where $\phi=\psi_{1}^{\prime}=f_{1}$, and $\underline{P}=P_{\mathbf{S}(N)} P P_{\mathbf{S}(N)}$ is the matrix representation of P on the subspace $\mathbf{S}(N)$.

6. Method 1

As noted towards the end of section 5, for our lower bound formula to work, the ground state of H^{\prime} must be the ground state of the variational problem: $\psi_{1}^{\prime}=f_{1}$ and $E_{1}^{\prime}=\lambda_{1}$. We rewrite negative $\left\langle\psi_{1}\right| H^{\prime}\left|\psi_{1}\right\rangle$:

$$
\begin{equation*}
-\left\langle\psi_{1}\right| H^{\prime}\left|\psi_{1}\right\rangle=-\left\langle\psi_{1}\right| H\left|\psi_{1}\right\rangle+\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle=-E_{1}+\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle \tag{16}
\end{equation*}
$$

Since $E_{1}^{\prime} \geqslant E_{1}$ by the variational construction of H^{\prime} we have the inequality:

$$
\begin{equation*}
-\left\langle\psi_{1}\right| H^{\prime}\left|\psi_{1}\right\rangle \geqslant-E_{1}^{\prime}+\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle \tag{17}
\end{equation*}
$$

Thus we now have to bound only $\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle$ from below. We know that $\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle$ is non-positive since:

$$
\begin{equation*}
E_{1}^{\prime} \geqslant E_{1}=\left\langle\psi_{1}\right| H^{\prime}\left|\psi_{1}\right\rangle+\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle \geqslant E_{1}^{\prime}+\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle \tag{18}
\end{equation*}
$$

We write ψ_{1} as

$$
\begin{equation*}
\psi_{1}=S_{0} \delta+\sum_{k=1}^{N} S_{k} f_{k} \tag{19}
\end{equation*}
$$

where δ is some normalized function in the complement of the subspace $\mathbf{S}(N)$, and S_{0} and S_{k} are merely the (real) coefficients of the expansion of ψ_{1}. We then write the
expectation value of P^{\prime} with considerable simplification since the integral $\langle f| P^{\prime}|g\rangle=0$ for any two functions $f, g \in \mathbf{S}(N)$ and $\langle h| P^{\prime}|h\rangle=\langle h| P|h\rangle$ for any function $h \in \mathbf{S}(N)^{\perp}$:

$$
\begin{align*}
0 \geqslant\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle= & \left\langle S_{0} \delta+\sum_{j=1}^{N} S_{j} f_{j}\right| P^{\prime}\left|S_{0} \delta+\sum_{k=1}^{N} S_{k} f_{k}\right\rangle \\
= & S_{0}^{2}\langle\delta| P^{\prime}|\delta\rangle+\sum_{j=1}^{N} S_{j} S_{0}\left\langle f_{j}\right| P^{\prime}|\delta\rangle \\
& +\sum_{k=1}^{N} S_{0} S_{k}\langle\delta| P^{\prime}\left|f_{k}\right\rangle+\sum_{j=1}^{N} \sum_{k=1}^{N} S_{j} S_{k}\left\langle f_{j}\right| P^{\prime}\left|f_{k}\right\rangle \\
= & S_{0}^{2}\langle\delta| P|\delta\rangle+\sum_{j=1}^{N} S_{j} S_{0}\left|f_{j}\right| P^{\prime}|\delta\rangle+\sum_{k=1}^{N} S_{0} S_{k}\langle\delta| P^{\prime}\left|f_{k}\right\rangle . \tag{20}
\end{align*}
$$

For positive-semidefinite P we have

$$
\begin{equation*}
0 \geqslant\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle \geqslant \sum_{j=1}^{N} S_{j} S_{0}\left|f_{j}\right| P^{\prime}|\delta\rangle+\sum_{k=1}^{N} S_{0} S_{k}\langle\delta| P^{\prime}\left|f_{k}\right\rangle . \tag{21}
\end{equation*}
$$

Since $\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle$ is non-positive the magnitude of the right-hand side is larger than the magnitude of $\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle$:

$$
\begin{equation*}
\left.\left|\left\langle\psi_{1}\right| P^{\prime}\right| \psi_{1}\right\rangle|\leqslant 2| S_{1}| | S_{0}| |\langle\delta| P^{\prime}\left|f_{1}\right\rangle\left|+2 \sum_{k=2}^{N}\right| S_{k}| | S_{0}| |\langle\delta| P^{\prime}\left|f_{k}\right\rangle \mid . \tag{22}
\end{equation*}
$$

Then using the Cauchy-Schwarz inequality we have:

$$
\begin{equation*}
\left.\left.\left|\left\langle\psi_{1}\right| P^{\prime}\right| \psi_{1}\right\rangle|\leqslant 2| S_{1}| | S_{0}| | f_{1}\left|\left(P^{\prime}\right)^{2}\right| f_{1}\right\rangle^{1 / 2}+2\left|S_{0}\right| \sum_{k=2}^{N}\left|S_{k}\right|\left\langle f_{k}\right|\left(P^{\prime}\right)^{2}\left|f_{k}\right|^{1 / 2} \tag{23}
\end{equation*}
$$

Inequality (23) does not contain the unknown function δ; it was removed by the CauchySchwarz inequality (22)-(23) and the positive-semidefinite character of the perturbation $P((20)-(21))$. Since we must remove the unknown δ, it was thus necessary for $P \geqslant 0$. Since we are expecting $\left|S_{1}\right|$ to be large (close to 1) while $\left|S_{k}\right|$ for $k \neq 1$ to be small (close to zero), it is not unreasonable to replace $\left|S_{k}\right|$ for $k \neq 1$ with the upper bound $\left(1-S_{1}^{2}\right)^{1 / 2}$:

$$
\begin{equation*}
\left.\left|\left\langle\psi_{1}\right| P^{\prime}\right| \psi_{1}\right\rangle|\leqslant 2| S_{1}| | S_{0}\left|\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{1}^{1 / 2}+2\right| S_{0} \mid\left(1-S_{1}^{2}\right)^{1 / 2} \sum_{k=2}^{N}\left\langle\left.\left(P^{\prime}\right)^{2}\right|_{k} ^{1 / 2}\right. \tag{24}
\end{equation*}
$$

where the integral $\langle\cdot\rangle_{k}$ refers to f_{k}. We similarly replace $\left|S_{0}\right|$ with the upper bound $\left(1-S_{1}^{2}\right)^{1 / 2}$:

$$
\begin{equation*}
\left.\left|\left\langle\psi_{1}\right| P^{\prime}\right| \psi_{1}\right\rangle|\leqslant 2| S_{1} \mid\left(1-S_{1}^{2}\right)^{1 / 2}\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{1}^{1 / 2}+2\left(1-S_{1}^{2}\right) \sum_{k=2}^{N}\left\langle\left.\left(P^{\prime}\right)^{2}\right|_{k} ^{1 / 2}\right. \tag{25}
\end{equation*}
$$

We now bound $\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle$ by the negative of the right-hand side of (25):

$$
\begin{equation*}
\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle \geqslant-2\left|S_{1}\right|\left(1-S_{1}^{2}\right)^{1 / 2}\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{1}^{1 / 2}-2\left(1-S_{1}^{2}\right) \sum_{k=2}^{N}\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{k}^{1 / 2} . \tag{26}
\end{equation*}
$$

Coupling (26) with (8) and (17) gives:

$$
\begin{equation*}
S_{1}^{2}-1+\frac{2\left|S_{1}\right|\left(1-S_{1}^{2}\right)^{1 / 2}\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{1}^{1 / 2}+2\left(1-S_{1}^{2}\right) \sum_{k=2}^{N}\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{k}^{1 / 2}}{E_{2}^{\prime}-E_{1}^{\prime}} \geqslant 0 \tag{27}
\end{equation*}
$$

This inequality can sometimes be used to calculate a non-trivial lower bound to S_{1}^{2} by plotting the left-hand side as a function of S_{1}^{2} and noting the intersections with the S_{1}^{2} axis. When such a bound is available, it can be substituted in (14) to give a lower bound to E_{1}.

7. Method 2

To improve upon the inequality used to bound S_{1}^{2} in section 6 we require that the lowest $M(1<M \leqslant N)$ eigenfunctions ψ_{n}^{\prime} of H^{\prime} are the variational eigenfunctions f_{n}; this is unlike in section 6 where we required only $\psi_{1}^{\prime}=f_{1}(M=1)$. We start by proving an Eckart-like inequality:

$$
\begin{equation*}
E_{1}^{\prime}-E_{M+1}^{\prime} \geqslant E_{1}-E_{M+1}^{\prime}=\left\langle\psi_{1}\right| H-E_{M+1}^{\prime}\left|\psi_{1}\right\rangle=\left\langle\psi_{1}\right| H^{\prime}+P^{\prime}-E_{M+1}^{\prime}\left|\psi_{1}\right\rangle . \tag{28}
\end{equation*}
$$

Then expand ψ_{1} in terms of the eigenfunctions ψ_{k}^{\prime} of the intermediate Hamiltonian:

$$
\begin{align*}
E_{1}^{\prime}-E_{M+1}^{\prime}-\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle & \geqslant \sum_{k=1}^{\infty} S_{k}^{2}\left(E_{k}^{\prime}-E_{M+1}^{\prime}\right) \\
& \geqslant \sum_{k=1}^{M} S_{k}^{2}\left(E_{k}^{\prime}-E_{M+1}^{\prime}\right) \geqslant\left(E_{1}^{\prime}-E_{M+1}^{\prime}\right) \sum_{k=1}^{M} S_{k}^{2} . \tag{29}
\end{align*}
$$

This can be rearranged to give a lower bound to the projection (overlap) of ψ_{1} on the subspace $\mathbf{S}(N)$, denoted by $S_{\mathbf{S}(N)}$:

$$
\begin{equation*}
S_{\mathbf{S}(N)}^{2} \geqslant \sum_{k=1}^{M} S_{k}^{2} \geqslant \frac{E_{N+1}^{0}-E_{1}^{\prime}+\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle}{E_{N+1}^{0}-E_{1}^{\prime}}=1+\frac{\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle}{E_{N+1}^{0}-E_{1}^{\prime}} \tag{30}
\end{equation*}
$$

where we have replaced E_{M+1}^{\prime} with E_{N+1}^{0}. Referring to the decomposition of ψ_{1} in (19) it is clear that $S_{0}^{2}=1-S_{\mathbf{S}(N)}^{2}$, which will be equal to or superior to the bound $S_{0}^{2} \leqslant 1-S_{1}^{2}$ used in section 6. Thus a new bound for S_{0}^{2} is developed using (30):

$$
\begin{equation*}
S_{0}^{2}=1-S_{\mathbf{S}_{(N)}}^{2} \leqslant-\frac{\left\langle\psi_{1}\right| P^{\prime}\left|\psi_{1}\right\rangle}{E_{N+1}^{0}-E_{1}^{\prime}}=\frac{\left.\left|\left\langle\psi_{1}\right| P^{\prime}\right| \psi_{1}\right\rangle \mid}{E_{N+1}^{0}-E_{1}^{\prime}} . \tag{31}
\end{equation*}
$$

We now use (24) as a bound for $\left.\left|\left\langle\psi_{1}\right| P^{\prime}\right| \psi_{1}\right\rangle \mid$, insert it in (31) and solve for $\left|S_{0}\right|$. The result is:

$$
\begin{equation*}
\left|S_{0}\right| \leqslant \frac{2\left|S_{1}\right|\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{1}^{1 / 2}+2\left(1-S_{1}^{2}\right)^{1 / 2} \sum_{k=2}^{N}\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{k}^{1 / 2}}{E_{N+1}^{0}-E_{1}^{\prime}} \tag{32}
\end{equation*}
$$

This bound for $\left|S_{0}\right|$ cannot be numerically calculated without knowledge of S_{1} but instead it is used symbolically in (24). Inequality (24) is combined with (8) and (17) to give:

$$
\begin{equation*}
S_{1}^{2} \geqslant 1-\frac{2\left|S_{1}\right|\left|S_{0}\right|\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{1}^{1 / 2}+2\left|S_{0}\right|\left(1-S_{1}^{2}\right)^{1 / 2} \sum_{k=2}^{N}\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{k}^{1 / 2}}{E_{2}^{\prime}-E_{1}^{\prime}} \tag{33}
\end{equation*}
$$

When (32) is used to bound $\left|S_{0}\right|$ in (33) the result is a single inequality with the single unknown S_{1}^{2} :

$$
\begin{align*}
S_{1}^{2} & -1+\frac{4 S_{1}^{2}\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{1}+8\left|S_{1}\right|\left(1-S_{1}^{2}\right)^{1 / 2}\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{1}^{1 / 2} \sum_{k=2}^{N}\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{k}^{1 / 2}}{\left(E_{2}^{\prime}-E_{1}^{\prime}\right)\left(E_{N+1}^{0}-E_{1}^{\prime}\right)} \\
& +\frac{4\left(1-S_{1}^{2}\right)\left[\sum_{k=2}^{N}\left\langle\left(P^{\prime}\right)^{2}\right\rangle_{k}^{1 / 2}\right]^{2}}{\left(E_{2}^{\prime}-E_{1}^{\prime}\right)\left(E_{N+1}^{0}-E_{1}^{\prime}\right)} \geqslant 0 . \tag{34}
\end{align*}
$$

When (34) provides a non-trivial lower bound to S_{1}^{2}, found by plotting the left-hand side as a function of S_{1}^{2} and noting the intersections with the S_{1}^{2} axis, the bound can be substituted in (14) to calculate a lower bound to E_{1}.

8. Example

We illustrate the two methods on the following one-dimensional Hamiltonian:

$$
\begin{equation*}
H=-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V_{\mathrm{box}}+p x \tag{35}
\end{equation*}
$$

where $V_{\text {box }}$ is the particle-in-a-box potential for a box from $x=0$ to $x=\pi$ (zero inside and infinite outside) and p is a constant. In accordance with section 3 we define the following:

$$
\begin{array}{ll}
H^{0}=-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V_{\mathrm{box}}, & P=p x, \tag{36}\\
H^{\prime}=-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V_{\mathrm{box}}+p P_{\mathbf{S}(N)} x P_{\mathbf{S}(N)}, & P^{\prime}=p x-p P_{\mathbf{S}(N)} x P_{\mathbf{S}(N)}
\end{array}
$$

In regards to (27) of method 1 and (34) of method 2 , the expectations values $\left\langle f_{k}\right|\left(P^{\prime}\right)^{2}\left|f_{k}\right\rangle$ are equal to $\left\langle f_{k}\right| P^{2}\left|f_{k}\right\rangle-\left\langle f_{k}\right| \underline{P}^{2}\left|f_{k}\right\rangle$. In table 1 lower bounds to E_{1} for $p=1 / 2$ are shown using methods 1 and 2 of this paper and the Temple bound. Method 2 is not inferior to method 1 as is expected since the bound on $\left|S_{0}\right|$ in the derivation is better in method 2. The Temple bound is superior to the methods in this paper for small sized calculations ($N=1$) and remains superior to method 1 . Method 2, however, begins to best the Temple bound rather quickly.

When the perturbation is increased to $p=3 / 2$ (table 2), method 1 fails to give a nontrivial bound to S_{1}^{2}, making it impossible to calculate a lower bound to E_{1}. The

Table 1
Lower bounds to E_{1} for the slightly perturbed particle-in-a-box Hamiltonian ($p=1 / 2$) are shown calculated from both methods in this paper and the Temple method. Also shown are the variational upper bound and lower bounds to S_{1}^{2}. Results are shown for three different sized calculations. $E_{2}^{\text {low }}=E_{2}^{0}=2$ for the Temple method. All energies have units hartree.

$p=1 / 2$	$N=1$	$N=10$	$N=50$
method 1: $S_{1}^{2} \geqslant$	0.612	0.999988	0.999999993
method 2: $S_{1}^{2} \geqslant$	0.612	0.999999930	0.999999999998
$E_{1} \leqslant E_{1}^{\prime}=$	1.285	1.232950164	1.232950148154
method 1: $E_{1} \geqslant$	1.059	1.232946279	1.232950146152
method 2: $E_{1} \geqslant$	1.059	1.232949861	1.232950148128
Temple: $E_{1} \geqslant$	1.172	1.232948435	1.232950147407

Table 2
Lower bounds to E_{1} for the moderately perturbed particle-in-a-box Hamiltonian ($p=3 / 2$) are shown calculated from method 2 of this paper. Also shown are the variational upper bound and lower bounds to S_{1}^{2}. Results are shown for three different sized calculations. $\left\langle\psi_{1}^{\prime}\right| H\left|\psi_{1}^{\prime}\right\rangle>E_{2}^{\text {low }}=E_{2}^{0}=2$ so the Temple method cannot be applied. Method 1 fails to yield nontrivial bounds to S_{1}^{2} and thus cannot be used to bound E_{1}. All energies have units hartree.

$p=3 / 2$	$N=1$	$N=10$	$N=50$
$S_{1}^{2} \geqslant$	$N A$	0.999998	0.999999999981
$E_{1} \leqslant E_{1}^{\prime}=$	2.856	2.435902	2.435902312140
method 2: $E_{1} \geqslant$	$N A$	2.435895	2.435902311697

Temple bound also fails because the lower bound on E_{2} from the base Hamiltonian is too poor: we always have $\left\langle\psi_{1}^{\prime}\right| H\left|\psi_{1}^{\prime}\right\rangle>E_{2}^{\text {low }}=E_{2}^{0}=2$. Only method 2 is able to provide a lower bound to E_{1} although it too fails when $N=1$ (for in this case it is equivalent to method 1).

9. Summary

A new method for calculating a lower bound to the ground-state eigenvalue of a Hamiltonian has been introduced. It relies on the construction of an exactly soluble intermediate Hamiltonian which is related to the matrix representation of the full operator on a special finite-dimensional subspace. A lower bound to the overlap of the lowest state of the intermediate Hamiltonian and full Hamiltonian is calculated and then used to generate a lower bound to the lowest eigenvalue of the full Hamiltonian. An explicit example is shown and the lower bound complements very well the upper bound to the ground-state eigenvalue of a one-dimensional Hamiltonian operator. Although we are quite satisfied with the performance of method 2 in this example we must remember that it is very restricted and its superior performance over the Temple bound may not be universal. Further progress must be made before a variation of these methods are suitable for a wide range of Hamiltonians; however, the current success is very encouraging.

Acknowledgement

I would like to thank Professor W. Martin Greenlee of the University of Arizona at Tucson for careful review of parts of this work and for enthusiastic encouragement.

References

[1] N.W. Bazley, Phys. Rev. 120 (1960) 144.
[2] N.W. Bazley, J. Math. Mech. 10 (1961) 289.
[3] N.W. Bazley and D.W. Fox, Phys. Rev. 124 (1961) 483-492.
[4] D.W. Fox, SIAM J. Math. Anal. 3 (1972) 617.
[5] C.E. Reid, Int. J. Quantum Chem. 6 (1972) 793.
[6] D.W. Fox and V.G. Sigillito, J. Appl. Math. Phys. 23 (1972) 392.
[7] C.E. Reid, Chem. Phys. Lett. 26 (1974) 243.
[8] G. Temple, Proc. Roy. Soc. London Ser. A 119 (1928) 276.
[9] A. Stevenson, Phys. Rev. 53 (1938) 19.
[10] D. Weinstein, Proc. Nat. Acad. Sci. U.S.A. 20 (1934) 529.
[11] H. Kleindienst and R. Emrich, Int. J. Quantum Chem. 37 (1990) 257.
[12] A. Luchow and H. Kleindienst, Int. J. Quantum Chem. 51 (1994) 211.
[13] F. King, J. Chem. Phys. 102 (1995) 8053.
[14] A. Scrinzi, Phys. Rev. A 45 (1992) 7787.
[15] P. Hertel, E.H. Lieb and W. Thirring, J. Chem. Phys. 62 (1975) 3355.
[16] H. Grosse, P. Hertel and W. Thirring, Acta Physica Austriaca 49 (1978) 89.
[17] D.M. Russell and W.M. Greenlee, Progress on estimation of energy levels for multi-electron atoms, in: Numerical Treatment of Eigenvalue Problems, International Series in Numerical Mathematics, Vol. 69 (1983) pp. 89-104.
[18] M.G. Marmorino, J. Math. Chem. 27 (2000) 31.
[19] J. Fleischhauer, W. Schleker and G. Raabe, Z. Naturforsh. A 46 (1991) 873.
[20] W. Thirring, A Course in Mathematical Physics, Vol 3: Quantum Mechanics of Atoms and Molecules (Springer, New York, 1981) pp. 154-155.
[21] I. Porras, M.D. Feldmann and F.W. King, Int. J. Quantum Chem. 71 (1999) 455.
[22] von F. Bopp, Z. Phys. 156 (1959) 348.
[23] F. Calogero and C. Marchioro, J. Math. Phys. 10 (1969) 562.
[24] M.G. Marmorino, J.C. Schug and C.A. Beattie, Int. J. Quantum Chem. 77 (2000) 779.
[25] C. Beattie and F. Goerisch, Numer. Math. 72 (1995) 143.
[26] F. Weinhold, Adv. Quantum Chem. 6 (1972) 299.

