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Lower bounds to ground-state eigenvalues

M.G. Marmorino ∗

Department of Chemistry, CPO 2027, Berea College, Berea, KY 40404, USA

A new lower bound method is presented for ground-state eigenvalues which relies on the
Eckart inequality. The method bears similarity to the variational method and the Temple lower
bound formula. Restrictions are that an exactly soluble base Hamiltonian must be available
with a positive-semidefinite perturbation to the Hamiltonian of interest. A sample calculation
shows that our method is able to sometimes best the Temple bound and also perform rigorously
when the Temple bound does not.
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1. Introduction

Eigenvalue problems abound in mathematics, physics and chemistry, and a stan-
dard method to approximate the eigenvalues is the variational method. Although the
variational method produces rigorous upper bounds, it does not give corresponding lower
bounds – without which the quality of variational approximations cannot be rigorously
judged. Thus the calculation of lower bounds is very important. Unfortunately, lower
bound calculations have not enjoyed the success of upper bound calculations. Lower
bound calculations typically suffer from theoretical as well as computational difficul-
ties. Numerous methods exist to calculate lower bounds to eigenvalues, such as: in-
termediate problems [1–7], variance-like formulas [8–14], effective fields [15–19], lo-
cal energy [20,21], inequalities between systems of the same or different numbers of
particles [22–24] and Temple–Lehmann methods [25]. No current method of lower
bound calculation has proved adequate for general use in quantum chemistry and thus
variational upper bound calculations or approximate calculations are the methods of
choice.

We present a simple and general strategy to calculate a lower bound to any eigen-
value of any Hamiltonian and then construct a very restricted but explicit method. The
restrictions are that a lower bound to only the ground-state eigenvalue of a Hamiltonian
is provided and the Hamiltonian must be greater than another exactly soluble Hamil-
tonian (which we call the base Hamiltonian).
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2. Strategy

We begin by taking the Gram determinant of the functions φ,Hφ and ψn where
φ is an arbitrary function in the domain of the Hamiltonian H and ψn is the nth eigen-
function of the Hamiltonian H with corresponding eigenvalue En. Assume that both φ
and ψn are normalized and real. Letting S denote 〈φ|ψn〉 = 〈ψn|φ〉, the result is:〈

φ
∣∣H 2

∣∣φ〉(1− S2
n

)− 〈φ|H |φ〉2 + 2EnS
2
n〈φ|H |φ〉 − E2

nS
2
n � 0. (1)

Using the quadratic formula to solve for En and rearranging gives:[〈φ|H |φ〉 − En]2 �
(
S−2
n − 1

)(〈
φ
∣∣H 2

∣∣φ〉− 〈φ|H |φ〉2). (2)

This result was derived by Weinhold [26]. If S2
n can be bounded from below then

an upper bound and lower bound are available for En through (2). Since upper bounds
are relatively simple to calculate by the variational theorem we concentrate on the lower
bound. Weinstein [10] and others have derived bounds similar to (2) but missing the
overlap term: [〈φ|H |φ〉 − En]2 �

(〈
φ
∣∣H 2

∣∣φ〉− 〈φ|H |φ〉2). (3)

The interpretation of this is that some eigenvalue (or spectral point, in general) is
bounded in the range indicated by (3) but there is no indication as to which quantum
number n (3) refers. When we incorporate Sn in (2) we assume that we know (or at
least can bound) the overlap of φ with a specific eigenfunction ψn; the result is an error
bracket around a specific (the nth) eigenvalue. When Sn = 1/2, (2) gives the same
numerical bound as (3) but allows a specific eigenvalue to be bounded.

3. The Temple lower bound

We now introduce the Eckart inequality:

S2
1 �

E2 − 〈φ|H |φ〉
E2 − E1

(4)

which gives a non-trivial lower bound to S2
1 only if 〈φ|H |φ〉 < E2, otherwise the bound

is zero or negative. Only in the non-trivial case can the Eckart inequality be properly
substituted in (2) to give the Temple lower bound:

E1 �
E2〈φ|H |φ〉 − 〈φ|H 2|φ〉

E2 − 〈φ|H |φ〉 , (5)

where the limitation 〈φ|H |φ〉 < E2 carries over from the Eckart inequality. Usually
E2 is not known; instead a lower bound Elow

2 can be substituted for E2 in the Eckart
inequality (4), which translates to the same substitution in the Temple lower bound (5):

E1 �
Elow

2 〈φ|H |φ〉 − 〈φ|H 2|φ〉
Elow

2 − 〈φ|H |φ〉
(6)
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with the modified limitation 〈φ|H |φ〉 < Elow
2 . A rigorous bound to E2 is sometimes

available, but when it is not available the Temple lower bound cannot be applied or must
be applied with “good faith” using an estimate or experimental value for E2. Estimation
of E2 ruins the rigor of the Temple bound so that an estimate of E1 results instead of
a lower bound to E1. An experimental value of E2 forces the calculation to be semi-
empirical instead of independent of experiment.

4. A new lower bound

Suppose that the Hamiltonian H is related to an exactly soluble Hamiltonian H ′
by the relation

H = H ′ + P ′. (7)

Suppose also that φ is the ground-state eigenfunction of H ′ with eigenvalue E′1. Then
the Eckart inequality supplies two different lower bounds to S2

1 = 〈φ|ψ1〉2. The first
is (4) above and the second is:

S2
1 �

E′2 − 〈ψ1|H ′|ψ1〉
E′2 − E′1

(8)

obtained by interchanging φ with ψ1 and all unprimed with primed quantities (E′2 is the
first excited-state eigenvalue of H ′). Insertion of (8) in (2) gives the lower bound:

E1 � 〈φ|H |φ〉 −
[〈ψ1|H ′|ψ1〉 − E′1
E′2 − 〈ψ1|H ′|ψ1〉

]1/2[〈
φ
∣∣H 2

∣∣φ〉− 〈φ|H |φ〉2]1/2
(9)

when 〈ψ1|H ′|ψ1〉 < E′2. This is to be compared with the Temple lower bound (5) since
they are derived in the same fashion. In (5) E2 must be bounded from below, while in (9)
〈ψ1|H ′|ψ1〉 must be bounded from above. Another difficulty involved in (5) and (9) is
that the integral 〈φ|H 2|φ〉 is needed, in addition, to the simpler integral 〈φ|H |φ〉; only
the latter is needed in variational (upper bound) calculations.

The bound given by (9) illustrates the idea involved, but unfortunately, the only
practical upper bound to 〈ψ1|H ′|ψ1〉 we have found makes use of the unknown S1, so
that (9) still has two unknowns: E1 and S1. Thus (9) is not practical.

Instead we first use the upper bound to 〈ψ1|H ′|ψ1〉 which makes use of the un-
known S1 to get a numerical bound to S2

1 using (8) and then substitute this numerical
bound in the following version of (2):

E1 � 〈φ|H |φ〉 −
[
S−2

1 − 1
]1/2[〈

φ
∣∣H 2

∣∣φ〉− 〈φ|H |φ〉2]1/2. (10)

Furthermore, since H ′φ = E′1φ and H = H ′ + P ′, (10) simplifies to:

E1 � E′1 −
[
S−2

1 − 1
]1/2[〈

φ
∣∣(P ′)2∣∣φ〉− 〈φ∣∣P ′∣∣φ〉2]1/2

. (11)
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The Temple bound can also be simplified in this case:

E1 �
Elow

2 E′1 − (E′1)2 − 2E′1〈φ|P ′|φ〉 − 〈φ|(P ′)2|φ〉
Elow

2 − E′1
. (12)

5. Intermediate problem

We introduce three Hamiltonians:

1. Base Hamiltonian H 0:

H 0ψ0
n = E0

nψ
0
n .

2. Intermediate Hamiltonian H ′:

H ′ψ ′n = E′nψ ′n.
3. Full Hamiltonian H :

Hψn = Enψn.
The eigenfunctions ψ0

n and eigenvalues E0
n of the base Hamiltonian H 0 are exactly

known. The ground-state eigenvalue E1 of the full Hamiltonian H is what we wish
to bound from below. The full Hamiltonian is greater than the base Hamiltonian by a
positive-semidefinite perturbation P so thatH = H 0+P . This means that the eigenval-
ues E0

n of the base Hamiltonian are already lower bounds (though probably poor) to the
eigenvalues En of the full Hamiltonian. Thus it may very well be possible to calculate
the Temple lower bound to E1 (which requires a lower bound to E2) so our new lower
bound formula must be able to compete with the Temple lower bound.

Suppose that we perform a linear variational calculation with H in the sub-
space S(N) which is the N-dimensional subspace spanned by the N eigenfunctions
ψ0

1 , . . . , ψ
0
N of H 0 that have the lowest eigenvalues. Define f1, . . . , fN as the N eigen-

functions (with eigenvalues λ1, . . . , λN) of this variational problem. Let R = S(N)⊥
be the orthogonal complement of S(N) so that the span of R and S(N) is the complete
Hilbert space. We define the intermediate Hamiltonian H ′ as:

H ′ = H 0 + PS(N)PPS(N), (13)

where PS(N) are projection operators onto the subspace S(N). S(N) and R are reducing
spaces for H ′ so that for any function f ∈ S(N), H ′f ∈ S(N) and for any function
f ∈ R, H ′f ∈ R. The eigenfunctions and eigenvalues for H ′ are then those of H ′|S(N)
and H ′|R. The eigenfunctions and eigenvalues of H ′|S(N) are those of the variational
problem ofH in S(N). These are readily calculated. The eigenfunctions and eigenvalues
of H ′|R are those of H 0|R since PS(N)PPS(N)|R = 0. These are known by assumption.
Thus the eigenfunctions and eigenvalues of H ′ are completely known. In a simple case
the eigenvalues of H ′ are

E′1 = λ1, E′2 = λ2, . . . , E′N = λN, E′N+1 = E0
N+1, E′N+2 = E0

N+2, . . . .
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This is not the only case; there can be much mixing of the variational and unused base-
Hamiltonian eigenstates. It can even be that the variational ground state is not the ground
state of H ′; however, for our lower bound formula to work λ1 must be E′1. In general,
we use only E′2 of the other intermediate eigenvalues and do not care if it is a variational
eigenvalue (= λ2) or unused base-Hamiltonian eigenvalue (=E0

N+1). In section 7 we
specialize the lower bound formula to require the simple case shown above.

The perturbation of H ′ to the full Hamiltonian is P ′ = P − PS(N)PPS(N) so that
H = H ′ + P ′ = H 0 +P . With this choice of the intermediate Hamiltonian inequalities
(11) and (12) simplify to:

E1 � E′1 −
[
S−2

1 − 1
]1/2[〈

ψ ′1
∣∣P 2

∣∣ψ ′1〉− 〈ψ ′1∣∣P 2
∣∣ψ ′1〉]1/2

(14)

and

E1 �
Elow

2 E′1 − (E′1)2 − 〈ψ ′1|P 2|ψ ′1〉 + 〈ψ ′1|P 2|ψ ′1〉
Elow

2 − E′1
, (15)

respectively, where φ = ψ ′1 = f1, and P = PS(N)PPS(N) is the matrix representation
of P on the subspace S(N).

6. Method 1

As noted towards the end of section 5, for our lower bound formula to work, the
ground state of H ′ must be the ground state of the variational problem: ψ ′1 = f1 and
E′1 = λ1. We rewrite negative 〈ψ1|H ′|ψ1〉:

− 〈ψ1

∣∣H ′∣∣ψ1
〉 = −〈ψ1|H |ψ1〉 +

〈
ψ1

∣∣P ′∣∣ψ1
〉 = −E1 +

〈
ψ1

∣∣P ′∣∣ψ1
〉
. (16)

Since E′1 � E1 by the variational construction of H ′ we have the inequality:

− 〈ψ1

∣∣H ′∣∣ψ1
〉
� −E′1 +

〈
ψ1

∣∣P ′∣∣ψ1
〉
. (17)

Thus we now have to bound only 〈ψ1|P ′|ψ1〉 from below. We know that 〈ψ1|P ′|ψ1〉 is
non-positive since:

E′1 � E1 =
〈
ψ1

∣∣H ′∣∣ψ1
〉+ 〈ψ1

∣∣P ′∣∣ψ1
〉
� E′1 +

〈
ψ1

∣∣P ′∣∣ψ1
〉
. (18)

We write ψ1 as

ψ1 = S0δ +
N∑
k=1

Skfk, (19)

where δ is some normalized function in the complement of the subspace S(N), and S0

and Sk are merely the (real) coefficients of the expansion of ψ1. We then write the
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expectation value of P ′ with considerable simplification since the integral 〈f |P ′|g〉 = 0
for any two functions f , g ∈ S(N) and 〈h|P ′|h〉 = 〈h|P |h〉 for any function h ∈ S(N)⊥:

0 �
〈
ψ1

∣∣P ′∣∣ψ1
〉=

〈
S0δ +

N∑
j=1

Sjfj

∣∣∣∣∣P ′
∣∣∣∣∣S0δ +

N∑
k=1

Skfk

〉

= S2
0

〈
δ
∣∣P ′∣∣δ〉+ N∑

j=1

SjS0
〈
fj
∣∣P ′∣∣δ〉

+
N∑
k=1

S0Sk
〈
δ
∣∣P ′∣∣fk〉+ N∑

j=1

N∑
k=1

SjSk
〈
fj
∣∣P ′∣∣fk〉

= S2
0〈δ|P |δ〉 +

N∑
j=1

SjS0
〈
fj
∣∣P ′∣∣δ〉+ N∑

k=1

S0Sk
〈
δ
∣∣P ′∣∣fk〉. (20)

For positive-semidefinite P we have

0 �
〈
ψ1

∣∣P ′∣∣ψ1
〉
�

N∑
j=1

SjS0
〈
fj
∣∣P ′∣∣δ〉+ N∑

k=1

S0Sk
〈
δ
∣∣P ′∣∣fk〉. (21)

Since 〈ψ1|P ′|ψ1〉 is non-positive the magnitude of the right-hand side is larger than the
magnitude of 〈ψ1|P ′|ψ1〉:

∣∣〈ψ1

∣∣P ′∣∣ψ1
〉∣∣ � 2|S1||S0|

∣∣〈δ∣∣P ′∣∣f1
〉∣∣+ 2

N∑
k=2

|Sk||S0|
∣∣〈δ∣∣P ′∣∣fk〉∣∣. (22)

Then using the Cauchy–Schwarz inequality we have:

∣∣〈ψ1

∣∣P ′∣∣ψ1
〉∣∣ � 2|S1||S0|

〈
f1

∣∣(P ′)2∣∣f1
〉1/2 + 2|S0|

N∑
k=2

|Sk|
〈
fk
∣∣(P ′)2∣∣fk〉1/2. (23)

Inequality (23) does not contain the unknown function δ; it was removed by the Cauchy–
Schwarz inequality (22)–(23) and the positive-semidefinite character of the perturba-
tion P ((20)–(21)). Since we must remove the unknown δ, it was thus necessary for
P � 0. Since we are expecting |S1| to be large (close to 1) while |Sk| for k �= 1 to
be small (close to zero), it is not unreasonable to replace |Sk| for k �= 1 with the upper
bound (1− S2

1)
1/2:

∣∣〈ψ1

∣∣P ′∣∣ψ1
〉∣∣ � 2|S1||S0|

〈(
P ′
)2〉1/2

1 + 2|S0|
(
1− S2

1

)1/2
N∑
k=2

〈(
P ′
)2〉1/2

k
, (24)
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where the integral 〈 · 〉k refers to fk. We similarly replace |S0| with the upper bound
(1− S2

1)
1/2:

∣∣〈ψ1

∣∣P ′∣∣ψ1
〉∣∣ � 2|S1|

(
1− S2

1

)1/2〈(
P ′
)2〉1/2

1 + 2
(
1− S2

1

) N∑
k=2

〈(
P ′
)2〉1/2

k
. (25)

We now bound 〈ψ1|P ′|ψ1〉 by the negative of the right-hand side of (25):

〈
ψ1

∣∣P ′∣∣ψ1
〉
� −2|S1|

(
1− S2

1

)1/2〈(
P ′
)2〉1/2

1 − 2
(
1− S2

1

) N∑
k=2

〈(
P ′
)2〉1/2

k
. (26)

Coupling (26) with (8) and (17) gives:

S2
1 − 1+ 2|S1|(1− S2

1)
1/2〈(P ′)2〉1/21 + 2(1− S2

1)
∑N

k=2 〈(P ′)2〉1/2k

E′2 − E′1
� 0. (27)

This inequality can sometimes be used to calculate a non-trivial lower bound to S2
1

by plotting the left-hand side as a function of S2
1 and noting the intersections with the

S2
1 axis. When such a bound is available, it can be substituted in (14) to give a lower

bound to E1.

7. Method 2

To improve upon the inequality used to bound S2
1 in section 6 we require that the

lowest M (1 < M � N) eigenfunctions ψ ′n of H ′ are the variational eigenfunctions fn;
this is unlike in section 6 where we required only ψ ′1 = f1 (M = 1). We start by proving
an Eckart-like inequality:

E′1 − E′M+1 � E1 − E′M+1 =
〈
ψ1

∣∣H − E′M+1

∣∣ψ1
〉 = 〈ψ1

∣∣H ′ + P ′ − E′M+1

∣∣ψ1
〉
. (28)

Then expand ψ1 in terms of the eigenfunctions ψ ′k of the intermediate Hamiltonian:

E′1 − E′M+1 −
〈
ψ1

∣∣P ′∣∣ψ1
〉
�
∞∑
k=1

S2
k

(
E′k − E′M+1

)

�
M∑
k=1

S2
k

(
E′k − E′M+1

)
�
(
E′1 − E′M+1

) M∑
k=1

S2
k . (29)

This can be rearranged to give a lower bound to the projection (overlap) of ψ1 on the
subspace S(N), denoted by SS(N):

S2
S(N) �

M∑
k=1

S2
k �

E0
N+1 − E′1 + 〈ψ1|P ′|ψ1〉

E0
N+1 − E′1

= 1+ 〈ψ1|P ′|ψ1〉
E0
N+1 − E′1

, (30)
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where we have replaced E′M+1 with E0
N+1. Referring to the decomposition of ψ1 in (19)

it is clear that S2
0 = 1−S2

S(N), which will be equal to or superior to the bound S2
0 � 1−S2

1

used in section 6. Thus a new bound for S2
0 is developed using (30):

S2
0 = 1− S2

S(N) � −
〈ψ1|P ′|ψ1〉
E0
N+1 − E′1

= |〈ψ1|P ′|ψ1〉|
E0
N+1 − E′1

. (31)

We now use (24) as a bound for |〈ψ1|P ′|ψ1〉|, insert it in (31) and solve for |S0|. The
result is:

|S0| � 2|S1|〈(P ′)2〉1/21 + 2(1− S2
1)

1/2∑N
k=2 〈(P ′)2〉1/2k

E0
N+1 − E′1

. (32)

This bound for |S0| cannot be numerically calculated without knowledge of S1 but in-
stead it is used symbolically in (24). Inequality (24) is combined with (8) and (17) to
give:

S2
1 � 1− 2|S1||S0|〈(P ′)2〉1/21 + 2|S0|(1− S2

1)
1/2∑N

k=2 〈(P ′)2〉1/2k

E′2 − E′1
. (33)

When (32) is used to bound |S0| in (33) the result is a single inequality with the single
unknown S2

1 :

S2
1 − 1+ 4S2

1〈(P ′)2〉1 + 8|S1|(1− S2
1)

1/2〈(P ′)2〉1/21

∑N
k=2〈(P ′)2〉1/2k

(E′2 − E′1)(E0
N+1 − E′1)

+ 4(1− S2
1)[
∑N

k=2 〈(P ′)2〉1/2k ]2
(E′2 − E′1)(E0

N+1 − E′1)
� 0. (34)

When (34) provides a non-trivial lower bound to S2
1 , found by plotting the left-hand

side as a function of S2
1 and noting the intersections with the S2

1 axis, the bound can be
substituted in (14) to calculate a lower bound to E1.

8. Example

We illustrate the two methods on the following one-dimensional Hamiltonian:

H = −1

2

d2

dx2
+ Vbox + px, (35)
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where Vbox is the particle-in-a-box potential for a box from x = 0 to x = π (zero inside
and infinite outside) and p is a constant. In accordance with section 3 we define the
following:

H 0 = −1

2

d2

dx2
+ Vbox, P = px,

H ′ = −1

2

d2

dx2
+ Vbox + pPS(N)xPS(N), P ′ = px − pPS(N)xPS(N).

(36)

In regards to (27) of method 1 and (34) of method 2, the expectations values
〈fk|(P ′)2|fk〉 are equal to 〈fk|P 2|fk〉 − 〈fk|P 2|fk〉. In table 1 lower bounds to E1 for
p = 1/2 are shown using methods 1 and 2 of this paper and the Temple bound. Method 2
is not inferior to method 1 as is expected since the bound on |S0| in the derivation is better
in method 2. The Temple bound is superior to the methods in this paper for small sized
calculations (N = 1) and remains superior to method 1. Method 2, however, begins to
best the Temple bound rather quickly.

When the perturbation is increased to p = 3/2 (table 2), method 1 fails to give
a nontrivial bound to S2

1 , making it impossible to calculate a lower bound to E1. The

Table 1
Lower bounds to E1 for the slightly perturbed particle-in-a-box Hamiltonian (p = 1/2) are
shown calculated from both methods in this paper and the Temple method. Also shown are
the variational upper bound and lower bounds to S2

1 . Results are shown for three different

sized calculations. Elow
2 = E0

2 = 2 for the Temple method. All energies have units hartree.

p = 1/2 N = 1 N = 10 N = 50

method 1: S2
1 � 0.612 0.999988 0.999999993

method 2: S2
1 � 0.612 0.999999930 0.999999999998

E1 � E′1 = 1.285 1.232950164 1.232950148154
method 1: E1 � 1.059 1.232946279 1.232950146152
method 2: E1 � 1.059 1.232949861 1.232950148128
Temple: E1 � 1.172 1.232948435 1.232950147407

Table 2
Lower bounds to E1 for the moderately perturbed particle-in-a-box Hamiltonian (p = 3/2)
are shown calculated from method 2 of this paper. Also shown are the variational upper
bound and lower bounds to S2

1 . Results are shown for three different sized calculations.

〈ψ ′1|H |ψ ′1〉 > Elow
2 = E0

2 = 2 so the Temple method cannot be applied. Method 1 fails to

yield nontrivial bounds to S2
1 and thus cannot be used to bound E1. All energies have units

hartree.

p = 3/2 N = 1 N = 10 N = 50

S2
1 � NA 0.999998 0.999999999981
E1 � E′1 = 2.856 2.435902 2.435902312140
method 2: E1 � NA 2.435895 2.435902311697
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Temple bound also fails because the lower bound on E2 from the base Hamiltonian is
too poor: we always have 〈ψ ′1|H |ψ ′1〉 > Elow

2 = E0
2 = 2. Only method 2 is able to

provide a lower bound to E1 although it too fails when N = 1 (for in this case it is
equivalent to method 1).

9. Summary

A new method for calculating a lower bound to the ground-state eigenvalue of a
Hamiltonian has been introduced. It relies on the construction of an exactly soluble in-
termediate Hamiltonian which is related to the matrix representation of the full operator
on a special finite-dimensional subspace. A lower bound to the overlap of the lowest
state of the intermediate Hamiltonian and full Hamiltonian is calculated and then used
to generate a lower bound to the lowest eigenvalue of the full Hamiltonian. An explicit
example is shown and the lower bound complements very well the upper bound to the
ground-state eigenvalue of a one-dimensional Hamiltonian operator. Although we are
quite satisfied with the performance of method 2 in this example we must remember that
it is very restricted and its superior performance over the Temple bound may not be uni-
versal. Further progress must be made before a variation of these methods are suitable
for a wide range of Hamiltonians; however, the current success is very encouraging.
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